INTRODUCTION

Fix an integer N > 2, an algebraic number field k£, and a prime ideal p in the ring of
integers Oy. Let ¢ :== [O : p] and let | - | : K — R>( be the non-archimedean absolute value
defined by |z| := ¢~ °"¥»(*), Let K be the completion of k with respect to | - |, denote the
unit balls in K by

o={reK:|x|<1} and m={x € K :|z|] <1},
and let u be the additive Haar measure on K which satisfies p(0) = 1. Writing (m)" for the

N-fold Cartesian product of m and d for Lebesgue integration against the N-fold product
measure, define

Fy(d. 3) = / (max |z; — ;) (min |, — ;)22 [ s — 515 dz
(m)N 1<J 1<J i<

for all suitable a;, 8;; € C. Our main result is that Fiy is a finite sum of meromorphic
functions in o; and 3;;, each determined explicitly by a finite tree called a splitting sequence.

Fnx AS AN IGUSA LOCAL ZETA FUNCTION

Given a compactly supported locally constant function ® : KV — C, a continuous homo-
morphism w : K* — C*, and a nonzero polynomial f(7) € K|[Z] = K|x1,...,xn], the
associated Igusa local zeta function is defined by

Za(w, K, ) := / B(F)w(f (7)) d7.

KN

Explicit values of Zg(w, K, f) for certain ®, w, and f are computed in [[gu89] and many
general properties of Z¢ are summarized in [Den91]. In particular, Denef showed by de-
composing K"V that Zg(w, K, f) is a rational function in ¢* where s is the exponent of w.

—

We find new values of Zg(w, K, f) by noting that Z¢ (w, K, f) = Fnx(&, 5) when

$(F) = Ly~ (F) (max [z; — ;|)™ (min z; — ;)% R(ei) = 0,

1< 1<
R(s) >0,

dij c Zzo,

w(y) = [yl

1<J

and 3;; = d;;s, and we will see that this Zg (w, K, f) is rational in all ¢® and ¢”ii.

Fy AS THE PARTITION FUNCTION FOR A LOG GAS IN K

In the classical real setting, a one-dimensional log gas is a system of N charged particles
distributed along the real line, subject to a repulsive logarithmic Coulomb potential and
an attractive harmonic potential at the origin as in [For10]. The particle locations z; € R are
organized into a vector ¥ = (z1,...,zx)" € RY called a microstate, to which we associate
an energy

N (%‘%)2 1
V(Z) = Z 25 ZQin 0g | — X oo
i=1 i<j

where | - | denotes the usual (archimedean) absolute value on R, the parameter 5 > 0 is
the inverse temperature (or “coldness”) of the system, and g¢; is the charge of the particle at
z;. The canonical partition function for this system is

N
A — —BV () dr = / — 5 (qiw;)? i — T qq;qgﬂd—’
~(B) /RN e X - He H|:U x;|L9PdE,

i=1 i<j

and me_ﬁ V(Z) is a probability density on RY from which many physical qualities of
the system are derived. In the special case that ¢; = 1 for all ¢ we recognize Zx () as the
Mehta integral, which extends to the meromorphic function given by

Zn(B) = (2m)N/? H 1;((114;]?//22))'

g=1

The interesting history and proof of this formula can be found respectively in [FW08] and
[For10]. Now consider a nonarchimedean analogue, where the NV particles have locations
r; € K and charges ¢; and are confined to m by an infinite potential outside m. The energy
associated to a microstate ¥ = (z1,...,2y)" € K in this system is

if z; € m for all 7,

V(f) o _Zz‘<j qiq; 10g|xz _:Ejl
o0 otherwise,

and so the canonical partition function is

Zw(B)i= [ @i [ 1) [Tl — oyl di = F(0,5)
KN KN

1<]

where ;; = q;q;5 and 8 > 0 is the coldness of the system. In particular, we have a

probablhty density function m Hi<j |sz — X qiq; P on the microstates ¥ € (m)N and

—

5
)

F ed
* [(max [ Xi — Xjilo)™ (min | X; — Xj‘)a2] B N0
1<) 1<) FN(O,
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BASIC PROPERTIES OF K

The topological and algebraic properties of K work together to give a convenient visual-
ization of m. We summarize some of them below (see [Wei95] for proofs):

Proposition 1 (Properties of K).

(@) The closed unit ball o is a discrete valuation ring with fraction field /K, maximal ideal
m, and unit groupo* =o\m={xr € K : |z| = 1}.

(b) The image of | - | : K — Rxq is ¢* U {0}, so every ball containing 0 in K has the form

m'={xre K:l|z|<qg "} n € 7.

These m™ (not to be confused with (m)™) comprise the group of fractional ideals of
K. Each satisfies m” N k = p”, and for every » > n we have an isomorphism of
abelian groups p" /p” — m” /m’".

(c) Every ball in K is open, compact, and of the form a +m" with a € K and n € Z. The
measure of each ball is given by p(a +m™) = ¢~ ".

Q
©) Q\
444 O

7

4.8%

D\ T

D MGG

o\
cm

) .‘.
N

Figure 1: All cosets of m*, m®, ..., m" in m where ¢ = 3. Eight cosets mod m” are labeled in red.

WHAT IS A SPLITTING SEQUENCE?

Definition 2. A splitting sequence of N is a tuple C = (Cy,C4,...,Cp_y) of compositions
Co = NPT F Nega such that 1 = No < Ny < -+ < Np_q < N = N. In this
case we write C' M N and call L(C) := L the length of C

The key property of splitting sequences is the correspondence

{é’ " N} {ordered rooted finite trees with splzttzng} |

in all depths and N leaves at the bottom

Figure 2: A two-step construction of the tree corresponding to a splitting sequence of 9.

C=(3],[1,1,4],]2,1,1,1,2,1],[1,2,1,1,1,1,1,1])

LS @@ ..
1 2 3

Definition 3. Let C h N, n € N, and a;, Bi; € C.For 0 € {0,1,... ,L(é) — 1} define

ALY = (i va(C)) is a descendant of v in the tree for C} form € {1,2,..., Ny},

n

Ny
1/ n L oo o= 2
(A%))’ and FEy(a,B,C) := dgeay + o + S: y: (Bij + |A(£)> :
m=1; jeA® m

m=1
1<J

THE MAIN RESULT
Theorem 4 (Main Theorem). Define the open sets

O, = {(a,5) e C*x C2) : R(E,(@,0(F),C)) > 0forall ¢ i N, all ¢ € Sy, and all £}
and

Q:={(a.6) € C?x C>) : By(@,0(F),C) ¢ 2 forall Ch N, all o € Sy, and all ¢}

—

where o(3) = (B,-1(:)s-1(;)). The function Fy defined by

Fy(d, ) = / (max |; — ;) (min [ — ;)22 [ s — 5% dz
(m)N 1<J 1<J i<

is analytic on €2} and extends to the analytic function on (2 defined by
L(C)-1 =

T Mi(C g
0 qu(&,O(g),é) — ]_ .

Pv@ = 3 3

ocESN C_;FhN =

A PROOF OUTLINE

(1) [Totally order m] Fix an element @ € p \ p? and a full set of representatives T for the
cosets of p C Oy, and recall |T'| = |0 /p| = q. It is well known that each x € m can
be written uniquely in the form

®.@)
I Ztnw", t, €T.
n=1

Now fix a total order < on 7' such that 0 is the least element. By identifying each
r € m with its coefficient word t¢5t3 ..., we define a total (lexicographic) order <
on all of m using the “alphabet” (T, <). Note that each x € m can be visualized as
a path down an ordered g-ary tree, in which = < y if and only if the path for z is
(eventually) to the left of the path for y.

(2) [Decompose (m)? via Weyl chambers] Define the fundamental Weyl chamber in (m)~

by W:={Zec (m)® :0<2z; <25 <--+ <y} Writing f(Z, a, 3) for the integrand
of Iy, neglecting a set of measure zero, and changing variables gives

Fn (&, 3:/( . f(&, @, pB)di= ) / F(Z,a,0(8)dz. (%)

—

(3) [Decompose WV into level sets of f(—,d,o(5))] Each £ € W determines a unique
pair (C, k) where C' fy N and k € N2(©) (see Figure 3), so W is a countable disjoint

- —

union of the sets W(C, k) := {Z € W : ¥ determines (C, k)}. In fact, f(—, &, o(B)) is

- —

constant on each W(C, k) and u™ (W(C, k)) can be found by counting, which yields

H ]\4'£(C_;7 q)q_Eﬁ(&aa(ﬁ),C)k3+1.

A = [{1,2,3,4,5,6,7,8)]

A A AN = [{1,2},{3,4,5}, {6,7,8}]

A A A AR AP = [{1,2), (3,4}, {5}, {6}, {7,8}]

Figure 3: The subgroup m® C m in Figure 1 has ¢ = 3 distinct cosets, which in counterclockwise
order are m?, tow + m?, and t'w + m® where T = {0,¢,t'}. The ordering 0 < t < ¢’ defines a total
order on m such that the cartesian product of the red cosets labeled 71,72, ..., 7s (in order) from
Figure 1 is contained in W. Let & = (x1, x2, . .., xg) be an element of that product and superimpose
the paths for x1, x2,...,zs as shown above. Collapsing the dashed path segments reveals the tree
of the splitting sequence C' = ([3],[1,2,2],[2,2,1,1,2]) h 8 and measuring their lengths determines

k = (1,3,2). The sets AL corresponding to C' are also tabulated above.

RECURSIVE CONSTRUCTION OF SPLITTING SEQUENCES

For a particular N > 2, one needs all Ch N explicitly in order to compute Fy using
Theorem 4. They can be constructed recursively as follows. Given C i N, let L = L(C)
and construct a family of splitting sequences C” i (N+1) using two types of modifications:

(1) [Add arow] A composition of (N + 1) having /N parts must be comprised of (N — 1)
1’s and a single 2. Choosing one such composition C';, = (N + 1) and appending it to

C' = (Cy, Ch,...,Cr_1) yields a splitting sequence C! = (Co,Ch,...,C) M (N +1).

(2) [Add anode] The last composition in C has the form Cr-1=1[M,Xo,..., AN, _,] F N.
We may construct C; _, = (N + 1) from C_; by increasing one of the parts A, by 1,

which yields a splitting sequence C’ = (Cy,C4,...,Cp_s,C}_,) h (N +1).

Each C' i N yields at most 2N — 1 distinct ¢’ th (N 4 1) via (1) and (2). Every ¢’ i (N 4 1)
can be constructed from some C h N in this way, so induction on N then gives:

Proposition 5. For N > 2 we have #{C th N} < (2N — 3)!l with equality only if N = 2, 3.

Figure 4: All splitting sequence trees for N = 2, 3, 4. The splitting sequences of 4 are organized into
three groups constructed respectively from the three splitting sequences of 3.

Recall m = pZ, and ¢ = p is prime. Given C th N, Definition 3 implies Mg(é :p) € Nif
)\,,(fb) < p for all m and otherwise Mg(@; p) = 0. Moreover, since a; = as = 0and §;; = 8
for all 75, Definition 3 gives

Ny |A(€)|
=I,8+ N — N;,, where FgI:Z( ;),
1

m=

i

for each ¢ and o. Using the definitions of €} and (2 in Theorem 4, it is easily verified that,

if (0,0,8,8,...,08) = (4, E) € () then (3 is not contained in

N — Ny 2min

_|_
'y log(p)

:nEZandEE{O,l,...,L(é)—l}},

—

and (0,0,8,8,...,8) = (a,8) € Q4 if and only if R(3) > —<. Now Theorem 4 implies

the following:

Corollary 6. The holomorphic function Zy defined by

ZN(/S) :/ H\xz—xﬂfdf on
(PZp) ™

1<J

{peC:R(p)>-2/N}

has an analytic continuation to C \ P given by

L(C)—1 -
(1—)[ ME(CQP)
p

ZN(B) = Z?Ej\; Z

chN  £=0

'yB+N—N, __ 1 )

This formula is an analog of Mehta’s integral, which for 8 > 0 gives an explicit form of the
partition function for a log gas of IV unit charges in pZ,. For example, if N = 4 we use the

set of splitting sequences {C'h4}in Figure 4 to compute
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