
A p-ADIC INTEGRAL BY COMBINATORICS
JOE WEBSTER UNIVERSITY OF OREGON

INTRODUCTION
Fix an integer N ≥ 2, an algebraic number field k, and a prime ideal p in the ring of
integersOk. Let q := [Ok : p] and let | · | : k → R≥0 be the non-archimedean absolute value
defined by |x| := q− ordp(x). Let K be the completion of k with respect to | · |, denote the
unit balls in K by

o = {x ∈ K : |x| ≤ 1} and m = {x ∈ K : |x| < 1},

and let µ be the additive Haar measure onK which satisfies µ(o) = 1. Writing (m)N for the
N -fold Cartesian product of m and d~x for Lebesgue integration against theN -fold product
measure, define

FN (~α, ~β) :=

∫
(m)N

(max
i<j
|xi − xj |)α1(min

i<j
|xi − xj |)α2

∏
i<j

|xi − xj |βij d~x

for all suitable αi, βij ∈ C. Our main result is that FN is a finite sum of meromorphic
functions inαi and βij , each determined explicitly by a finite tree called a splitting sequence.

FN AS AN IGUSA LOCAL ZETA FUNCTION

Given a compactly supported locally constant function Φ : KN → C, a continuous homo-
morphism w : K× → C×, and a nonzero polynomial f(~x) ∈ K[~x] = K[x1, . . . , xN ], the
associated Igusa local zeta function is defined by

ZΦ(w,K, f) :=

∫
KN

Φ(~x)w(f(~x)) d~x.

Explicit values of ZΦ(w,K, f) for certain Φ, w, and f are computed in [Igu89] and many
general properties of ZΦ are summarized in [Den91]. In particular, Denef showed by de-
composing KN that ZΦ(w,K, f) is a rational function in qs where s is the exponent of w.
We find new values of ZΦ(w,K, f) by noting that ZΦ(w,K, f) = FN (~α, ~β) when

Φ(~x) = 1(m)N (~x)(max
i<j
|xi − xj |)α1(min

i<j
|xi − xj |)α2 , <(αi) ≥ 0,

w(y) = |y|s, <(s) ≥ 0,

f(~x) =
∏
i<j

(xi − xj)dij , dij ∈ Z≥0,

and βij = dijs, and we will see that this ZΦ(w,K, f) is rational in all qαi and qβij .

FN AS THE PARTITION FUNCTION FOR A LOG GAS IN K
In the classical real setting, a one-dimensional log gas is a system of N charged particles
distributed along the real line, subject to a repulsive logarithmic Coulomb potential and
an attractive harmonic potential at the origin as in [For10]. The particle locations xi ∈ R are
organized into a vector ~x = (x1, . . . , xN )t ∈ RN called a microstate, to which we associate
an energy

V (~x) :=
N∑
i=1

(qixi)
2

2β
−
∑
i<j

qiqj log |xi − xj |∞

where | · |∞ denotes the usual (archimedean) absolute value on R, the parameter β ≥ 0 is
the inverse temperature (or “coldness”) of the system, and qi is the charge of the particle at
xi. The canonical partition function for this system is

ZN (β) :=

∫
RN

e−βV (~x) d~x =

∫
RN

N∏
i=1

e−
1
2 (qixi)

2 ∏
i<j

|xi − xj |qiqjβ∞ d~x,

and 1
ZN (β)e

−βV (~x) is a probability density on RN from which many physical qualities of
the system are derived. In the special case that qi = 1 for all i we recognize ZN (β) as the
Mehta integral, which extends to the meromorphic function given by

ZN (β) = (2π)N/2
N∏
j=1

Γ(1 + jβ/2)

Γ(1 + β/2)
.

The interesting history and proof of this formula can be found respectively in [FW08] and
[For10]. Now consider a nonarchimedean analogue, where the N particles have locations
xi ∈ K and charges qi and are confined to m by an infinite potential outside m. The energy
associated to a microstate ~x = (x1, . . . , xN )t ∈ KN in this system is

V (~x) :=

{
−
∑
i<j qiqj log |xi − xj | if xi ∈ m for all i,

∞ otherwise,

and so the canonical partition function is

ZN (β) :=

∫
KN

e−βV (~x) d~x =

∫
KN

1(m)N (~x)
∏
i<j

|xi − xj |qiqjβv d~x = FN (0, ~β)

where βij = qiqjβ and β ≥ 0 is the coldness of the system. In particular, we have a
probability density function 1

ZN (β)

∏
i<j |xi − xj |qiqjβ on the microstates ~x ∈ (m)N and

E
[
(max
i<j
|Xi −Xj |v)α1(min

i<j
|Xi −Xj |)α2

]
=
FN (~α, ~β)

FN (0, ~β)
.

BASIC PROPERTIES OF K
The topological and algebraic properties of K work together to give a convenient visual-
ization of m. We summarize some of them below (see [Wei95] for proofs):

Proposition 1 (Properties of K).

(a) The closed unit ball o is a discrete valuation ring with fraction fieldK, maximal ideal
m, and unit group o× = o \m = {x ∈ K : |x| = 1}.

(b) The image of | · | : K → R≥0 is qZ ∪ {0}, so every ball containing 0 in K has the form

mn = {x ∈ K : |x| ≤ q−n}, n ∈ Z.

These mn (not to be confused with (m)n) comprise the group of fractional ideals of
K. Each satisfies mn ∩ k = pn, and for every r ≥ n we have an isomorphism of
abelian groups pn/pr → mn/mr.

(c) Every ball in K is open, compact, and of the form a+mn with a ∈ K and n ∈ Z. The
measure of each ball is given by µ(a+ mn) = q−n.
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Figure 1: All cosets of m2,m3, . . . ,m7 in m where q = 3. Eight cosets mod m7 are labeled in red.

WHAT IS A SPLITTING SEQUENCE?
Definition 2. A splitting sequence of N is a tuple ~C = (C0, C1, . . . , CL−1) of compositions
C` = [λ

(`)
1 , λ

(`)
2 , . . . , λ

(`)
N`

] ` N`+1 such that 1 = N0 < N1 < · · · < NL−1 < NL = N . In this
case we write ~C t N and call L(~C) := L the length of ~C.

The key property of splitting sequences is the correspondence{
~C t N

}
←→

{
ordered rooted finite trees with splitting
in all depths and N leaves at the bottom

}
.

Figure 2: A two-step construction of the tree corresponding to a splitting sequence of 9.
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Definition 3. Let ~C t N , n ∈ N, and αi, βij ∈ C. For ` ∈ {0, 1, . . . , L(~C)− 1} define

Λ(`)
m := {i : v

(L(~C))
i is a descendant of v(`)

m in the tree for ~C} for m ∈ {1, 2, . . . , N`},

M`(~C;n) :=

N∏̀
m=1

1

n

(
n

λ
(`)
m

)
, and E`(~α, ~β, ~C) := δ0`α1 +α2 +

N∑̀
m=1

∑
i,j∈Λ(`)

m
i<j

(
βij +

2

|Λ(`)
m |

)
.

THE MAIN RESULT
Theorem 4 (Main Theorem). Define the open sets

Ω+ :=
{

(~α, ~β) ∈ C2 × C(N
2 ) : <(E`(~α, σ(~β), ~C)) > 0 for all ~C t N , all σ ∈ SN , and all `

}
and

Ω :=
{

(~α, ~β) ∈ C2 × C(N
2 ) : E`(~α, σ(~β), ~C) /∈ 2πiZ

log(q) for all ~C t N , all σ ∈ SN , and all `
}

where σ(~β) = (βσ−1(i)σ−1(j)). The function FN defined by

FN (~α, ~β) :=

∫
(m)N

(max
i<j
|xi − xj |)α1(min

i<j
|xi − xj |)α2

∏
i<j

|xi − xj |βij d~x

is analytic on Ω+ and extends to the analytic function on Ω defined by

FN (~α, ~β) =
1

qN

∑
σ∈SN

∑
~CtN

L(~C)−1∏
`=0

M`(~C; q)

qE`(~α,σ(~β), ~C) − 1
.

A PROOF OUTLINE

(1) [Totally order m] Fix an element $ ∈ p \ p2 and a full set of representatives T for the
cosets of p ⊂ Ok, and recall |T | = |Ok/p| = q. It is well known that each x ∈ m can
be written uniquely in the form

x =

∞∑
n=1

tn$
n, tn ∈ T.
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Now fix a total order ≺ on T such that 0 is the least element. By identifying each
x ∈ m with its coefficient word t1t2t3 . . . , we define a total (lexicographic) order ≺
on all of m using the “alphabet” (T,≺). Note that each x ∈ m can be visualized as
a path down an ordered q-ary tree, in which x ≺ y if and only if the path for x is
(eventually) to the left of the path for y.

(2) [Decompose (m)N via Weyl chambers] Define the fundamental Weyl chamber in (m)N

byW := {~x ∈ (m)N : 0 ≺ x1 ≺ x2 ≺ · · · ≺ xN}. Writing f(~x, ~α, ~β) for the integrand
of FN , neglecting a set of measure zero, and changing variables gives

FN (~α, ~β) =

∫
(m)N

f(~x, ~α, ~β) d~x =
∑
σ∈SN

∫
W
f(~x, ~α, σ(~β)) d~x. (∗)

(3) [Decompose W into level sets of f(−, ~α, σ(~β))] Each ~x ∈ W determines a unique
pair (~C,~k) where ~C t N and ~k ∈ NL(~C) (see Figure 3), soW is a countable disjoint
union of the setsW(~C,~k) := {~x ∈ W : ~x determines (~C,~k)}. In fact, f(−, ~α, σ(~β)) is
constant on eachW(~C,~k) and µN (W(~C,~k)) can be found by counting, which yields

∫
W(~C,~k)

f(~x, ~α, σ(~β)) d~x =
1

qN

L(~C)−1∏
`=0

M`(~C, q)q
−E`(~α,σ(~β), ~C)k`+1 .

The theorem follows by summing over all ~k and ~C and returning to (∗).
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Figure 3: The subgroup m2 ⊂ m in Figure 1 has q = 3 distinct cosets, which in counterclockwise
order are m2, t$ + m2, and t′$ + m2 where T = {0, t, t′}. The ordering 0 ≺ t ≺ t′ defines a total
order on m such that the cartesian product of the red cosets labeled τ1, τ2, . . . , τ8 (in order) from
Figure 1 is contained inW . Let ~x = (x1, x2, . . . , x8) be an element of that product and superimpose
the paths for x1, x2, . . . , x8 as shown above. Collapsing the dashed path segments reveals the tree
of the splitting sequence ~C = ([3], [1, 2, 2], [2, 2, 1, 1, 2]) t 8 and measuring their lengths determines
~k = (1, 3, 2). The sets Λ

(`)
m corresponding to ~C are also tabulated above.

RECURSIVE CONSTRUCTION OF SPLITTING SEQUENCES

For a particular N ≥ 2, one needs all ~C t N explicitly in order to compute FN using
Theorem 4. They can be constructed recursively as follows. Given ~C t N , let L = L(~C)

and construct a family of splitting sequences ~C ′ t (N+1) using two types of modifications:

(1) [Add a row] A composition of (N + 1) having N parts must be comprised of (N − 1)
1’s and a single 2. Choosing one such composition CL ` (N + 1) and appending it to
~C = (C0, C1, . . . , CL−1) yields a splitting sequence ~C ′ = (C0, C1, . . . , CL) t (N + 1).

(2) [Add a node] The last composition in ~C has the formCL−1 = [λ1, λ2, . . . , λNL−1
] ` N .

We may construct C ′L−1 ` (N + 1) from CL−1 by increasing one of the parts λm by 1,
which yields a splitting sequence ~C ′ = (C0, C1, . . . , CL−2, C

′
L−1) t (N + 1).

Each ~C t N yields at most 2N − 1 distinct ~C ′ t (N + 1) via (1) and (2). Every ~C ′ t (N + 1)

can be constructed from some ~C t N in this way, so induction on N then gives:

Proposition 5. For N ≥ 2 we have #{~C t N} ≤ (2N − 3)!! with equality only if N = 2, 3.
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Figure 4: All splitting sequence trees for N = 2, 3, 4. The splitting sequences of 4 are organized into
three groups constructed respectively from the three splitting sequences of 3.

EXAMPLE: K = Qp WITH α1 = α2 = 0 AND βij = β

Recall m = pZp and q = p is prime. Given ~C t N , Definition 3 implies M`(~C; p) ∈ N if
λ

(`)
m ≤ p for all m and otherwise M`(~C; p) = 0. Moreover, since α1 = α2 = 0 and βij = β

for all ij, Definition 3 gives

E`(0, σ(~β), ~C) =

N∑̀
m=1

∑
i,j∈Λ(`)

m
i<j

(
β +

2

|Λ(`)
m |

)
= Γ`β +N −N`, where Γ` :=

N∑̀
m=1

(
|Λ(`)
m |
2

)
,

for each ` and σ. Using the definitions of Ω and Ω+ in Theorem 4, it is easily verified that,
if (0, 0, β, β, . . . , β) = (~α, ~β) ∈ Ω then β is not contained in

P :=
⋃
~CtN

{
−N −N`

Γ`
+

2πin

Γ` log(p)
: n ∈ Z and ` ∈ {0, 1, . . . , L(~C)− 1}

}
,

and (0, 0, β, β, . . . , β) = (~α, ~β) ∈ Ω+ if and only if <(β) > − 2
N . Now Theorem 4 implies

the following:

Corollary 6. The holomorphic function ZN defined by

ZN (β) =

∫
(pZp)N

∏
i<j

|xi − xj |βv d~x on {β ∈ C : <(β) > −2/N}

has an analytic continuation to C \ P given by

ZN (β) =
N !

pN

∑
~CtN

L(~C)−1∏
`=0

M`(~C; p)

pΓ`β+N−N` − 1
.

This formula is an analog of Mehta’s integral, which for β ≥ 0 gives an explicit form of the
partition function for a log gas of N unit charges in pZp. For example, if N = 4 we use the
set of splitting sequences {~C t 4} in Figure 4 to compute

Z4(β) =
4!

p4

(
1
p

(
p
4

)
(p6β+3 − 1)

+

2
p2

(
p
2

)(
p
3

)
(p6β+3 − 1)(p3β+2 − 1)

+

4
p3

(
p
2

)3
(p6β+3 − 1)(p3β+2 − 1)(pβ+1 − 1)

+

3
p2

(
p
3

)(
p
2

)
(p6β+3 − 1)(pβ+1 − 1)

+

1
p3

(
p
2

)3
(p6β+3 − 1)(p2β+2 − 1)

+

2
p3

(
p
2

)3
(p6β+3 − 1)(p2β+2 − 1)(pβ+1 − 1)

)
.
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