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A statistical model of electrostatics on a line: Setup

@ Consider a system of N labeled point charges with random locations
x1,...,xy € R. Call each tuple x = (x1,...,xy) € RN a microstate.

@® Fix a measurable function E : RN — [~o0, o] that assigns each
microstate a total energy E(x).

©® Assume the system is in thermal equilibrium with a heat reservoir at
absolute temperature T > 0.

O Fix the Boltzmann constant k > 0 that makes ( ) dimensionless and
define the inverse temperature parameter 8 = iT
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A statistical model of electrostatics on a line: Key idea

The energy E induces a probability distribution on the microstates:

1
dPs(x) = -

e PEX)dx  where ZN(ﬁ):/ e PEM) dx
n(B) RN

e Intuition: Low-energy states are more probable than high-energy
states. This disparity becomes more pronounced as T \, 0.

e Practical use: Taking expectations with dPg for various /3 reveals
the system’s observable/macroscopic behavior.

e Important task: Determine the domain and explicit form of the
canonical partition function Z.
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Example: log-Coulomb gas in a harmonic well

The Mehta integral is
1 2
z - =3Il - x:|Pd
YORN S L[ 51"

e |t is the canonical partition function when E(x) is the sum of...
o harmonic potential energies 25 x? fori=1,2,...,N and
o log-Coulomb potential energies — log |x; — x;| for 1<i<j<N

e Dyson and Mehta encountered Zy() in random matrix theory and
computed it for 5 =1,2,4.

Theorem (Bombieri, late 1970's)

Z0(8) )N/QHrr(lli fg//zz) i Re(8) > —2/N




p-adic log-Coulomb gas

e Suppose the charges have random locations xi,...,xy € Qp instead.



p-adic log-Coulomb gas

e Suppose the charges have random locations xi,...,xy € Qp instead.
e Now QI'DV is the space of microstates x = (x, ..., xy) with standard
norm || - ||, and Haar measure dx defined by

Ixle = max, bile  and /Zydx:l

where Zp, = {x € Q, : |x|p < 1} is the ring of p-adic integers.



p-adic log-Coulomb gas

e Suppose the charges have random locations xi,...,xy € Qp instead.
e Now QI'DV is the space of microstates x = (x, ..., xy) with standard
norm || - ||, and Haar measure dx defined by

o= max Ixl,  and [ dx=1
P
where Zp, = {x € Q, : |x|p < 1} is the ring of p-adic integers.

e Choose an analogue V/(x) of the total harmonic potential, so that
e =BV = p(||x|,) is “nice” (like e~2IXI” for x € RM) and define

E(x) = V(x) =) _log|xi — Xl

i<j
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The p-adic Mehta integral

Main question:

Zu(6) = [ Al T b =3 e = 27

P i<j

e Nice fact 1: It suffices to compute [,y [];; [xi — xj|» dx because
P

N N
Zn(8) = (Z p(p'")p'"<”+(z>ﬂ>) (@ p 7). [ T -3 dx
mez AT,
e Nice fact 2: Vp:= {x € Z;,V : x; = x;j for some i < j} has measure 0,

; N
so we only need to do the integral over Z,; \ Vo.

¢ Question: What do microstates x € ZQ’\ Vo look like?
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What does the diagram tell us?

e The microstate x € Zg \ Vo determines a pair of tuples

rh = (m07m15m2)m37m4) and n= (n07n17n27n3) :

Mo ={1,2,3,4,5,6,7,8,9} appeared ny = 1 time
my = {5,7}{1,2,9}{3,4,6,8} appeared n; = 2 times
My = {5,7}{1,2,9}{6}{3,4,8} appeared n, = 1 time

s = {7TH5H{2}H{1}{9}{6}{4}{3,8} appeared n3 = 2 times
Ma = {7TH{5}{2}{1}{9}{6}{4}{8}{3} appeared forever after.

o Note: p = 3 is not special here. Many x in Z2, Z9, Z3;, ..., etc.,
determine the same pair (rh, n) in the same way.

e For any p, let T,(th, n) be the set of all x € Z? that determine (rh, n).
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The value of [;_; [xi — X[, on Tp(rh, n)

o If To(h, n) # @, then for every x € T,(rh, n) we have

17(no+n1+...+ngij) for 1 S i <_] S 9’

|xi — Xilp = P
where ¢j; = max{¢ : i and j are in a common X € rhy}.

e This means any function that factors through x — (|x; — xj|p)i<; is
constant on 7,(rh, n), with value explicitly determined by (rh, n)!

e In particular, the product of the factors |x; — xj|, has a nice form:

Every x € Tp(rh, n) satisfies

H |xi — xj|p = p(g) f[ p [erml (#?)] " =29

i<j =0
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The measure of T,(rh, n)

We attach a polynomial My(t) € Z[t] to rh using falling factorials:

Partitions

Factors of My(t)

o = {1,2,3.4,5,6,7,8,9}

thy = {5,7}{1,2,9}{3,4,6,8}
{5,71{1,2,9}{6}{3, 4,8}

thy = {TH5H2H{1}{9H{6}{4}{3.8}
e = {TH5H{2}H{1}{9}{6}{4}{8}{3}

(t—1)5-1
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We attach a polynomial My(t) € Z[t] to rh using falling factorials:

Partitions Factors of My(t)

tho = {1,2,3,4,5,6,7,8,9} (t— 1)1
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The measure of T,(rh, n)

We attach a polynomial My(t) € Z[t] to rh using falling factorials:

Partitions Factors of My(t)

tho = {1,2,3,4,5,6,7,8,9} (t— 1)1

M1 = {5,7}{1,2,9}{3,4,6,8} (t—1),

My = {5,7}{1,2,9}{6}{3.4,8} (t— 1)2_1, (t—1)3-1, (t—1)2—1
s = {THSH2H1HOH6{4}{3.8) | (t—1)o

e = {TH5H2H1H9H{6}{4}{8}{3}

Ma(t) = (t = 1)3 - (t = 1)1 = (t = 1)°(t - 2)°

The set Tp(rh, n) is compact and open with Haar measure

3
Mg (p) - H p—fa"k(mz)"z =(p— 1)6(p . 2)2 ) p—27
=0
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Putting the Key Facts together

For each partition h and 8 € C it is convenient to define

E(9) = k() + 3 (%)

AEM

for then if Re(3) is sufficiently large we have...

Key Fact 1 + Key Fact 2 —

Z H|X’ Xj|pdx— Z () .Mm()_Hp En, (8)

nezt,” o) g nezt, =0
— p()8
p H Erhg (ﬁ)

*Punchline: Summing over all possible th gives [0 []
P

o
N ©
=™
o
w
|
N

i< 1Xi = Xj‘g dx!
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Definition: Splitting chains

A tuple th = (Mo, ..., M) of partitions of {1,2,..., N} is called a
splitting chain of order N and length L(rh) = L if

(1,2, N} =thg > hy > -+ >y = {1}{2} ... {N}

Write Sy for the set of all splitting chains of order N. Each h € Sy has:
e a monic degree N — 1 multiplicity polynomial My (t) € Z[t],
e a family of exponents {E;, égg)_l, and

e an associated rational expression

L(h)—1 .
It (B) == My (t) - H ) 1 € Q(t, %)

=0 -1
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The value of the p-adic Mehta integral

Theorem (W., 2020)
The p-adic Mehta integral converges for Re(3) > —2/N with value

Zn(8) = (Z p(p"’)pm(’”(g)ﬁ)) (P2 = p) - 3 dnp(8)

meZ heSy

Note: The same strategy yields a more general formula for
. b )
. oI (maxt; = 1) (min i 1) [T s = 1 e
i<j

where K is an arbitrary nonarchimedean local field. This provides the
canonical partition function for mixed-charge gases and joint moments of
the diameter max;; |x; — x;| and minimal particle spacing min;<; [x; — x;j].
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t—1
D> dne(B) = TF_1

hesS,

> ety = G g

2438 _ 2438 _ 1+8
hess t 1 (t 1)(t 1)




Examples: N =2,3,4

t—1

mgz Ine(B) = g7
(t—1)(t—2) (t—1)°
m; Jm,t(ﬁ) = 2438 _ 1 +3- (t2+3ﬁ _ 1)(t1+5 — 1)
(e = 1)(t—2)(t—3) (t = 1)%(t—2) (1)t~ 2)
mg Jin,e(B) = 3168 1 4 (3768 _ 1)(£2+36 1) +o (3468 — 1)(t1+6 — 1)
s (t—1)3 ‘6 (t—1)°

" (6368 — 1)(12+26 — 1) (63768 — 1)(£2+28 — 1)(£11F — 1)
(t—1)°

(63166 — 1)(£2+36 — 1)(£1+5 — 1)

+12.
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A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

(N1)?

#Sn = ((2 |n(2))N . N1+In(2)/3

) as N — oo

We can set up an efficient alternative:

e Define Fo(r,3):=1and Fi(r,B):=1forall e Candall r e R
e For N > 2, Re(8) > —2/N, and r € R, recursively define

N—-1

' s|nh( [(N+( )8) (1= )+1]) - Fi(r,B) - Fn—i(r, B)

k
2N sm(s[(v (D))
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A scary theorem and a quadratic recurrence

Theorem (Lengyel, 1984)

(N1)?
((2 In(2))N - NI+n(@)/3

#Sny =Q ) as N — oo

We can set up an efficient alternative:

e Define Fo(r,3):=1and Fi(r,B):=1forall e Candall r e R
e For N > 2, Re(8) > —2/N, and r € R, recursively define
N—1

k Sln Wk
N G Rt 8) - ()

k=1

e Note: If N and r are fixed, 8 — Fp(r,3) is holomorphic
e Note: If N and 3 are fixed, r — Fp(r,3) is even and smooth
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zu(® = [ TIbi—xl3 ax
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An efficient formula

Recall: The p-adic Mehta Integral with N > 2 and p = 1jg ] has the form
()= [ TL b sls dx
zy g
and converges absolutely if and only if Re(5) > —2/N. In this case...

Theorem (Sinclair and W., 2021)

The value of the integral can be computed efficiently via

2n(8) = Nt - p2 ()8 Fy(log(p), B)

A\

Corollary (The p — 1 Limit and p — p~! Functional Equation)
The value of Zy(3) extends to a smooth function of p € (0, c0) satisfying

= p ()7 2y (8)

lim Zy(8) = N1 - Fu(0.5) and Zw(H)|,.,,-
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Grand canonical partition functions

e Suppose the gas also exchanges particles with the reservoir with
“fugacity parameter” f

e [V is no longer constant, so we replace Zy by a grand canonical
partition function, defined for 5 > 0 and f € C by

oo fN
2(8,F) =D Zn(B) g
N=0 '

e Similarly, for log-Coulomb gases in pZ, we define

(¢} S [¢] fN [¢]
260 = X ZiP)g where (9 = [ CE R

i<j



The pth Power Law

Theorem (Sinclair, 2020)

The grand canonical partition function for log-Coulomb gas in 7, satisfies
Z(6,f) = (2°(8, 1))
forall 3> 0 and f € C.




The pth Power Law

Theorem (Sinclair, 2020)

The grand canonical partition function for log-Coulomb gas in 7, satisfies
Z(6,f) = (2°(8, 1))
forall 3> 0 and f € C.

Interpretation: A log-Coulomb gas in Z, exchanging particles with the
reservoir is the same as p identical copies of a log-Coulomb gas in pZ,
exchanging particles with the reservoir.
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The projective line ]P’l((@p) is a compact metric space with...
e a transitive action by the projective linear group PGLy(Zp)
e a unique PGLy(Zp)-invariant Borel probability measure p

e a PGLy(Zp)-invariant metric §, defined for x = [ug : u1] and
y = [w : vi] in PX(Qp) by

|uovi — u1volp
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The projective analogue: Setup

The projective line ]P’l((@p) is a compact metric space with...
e a transitive action by the projective linear group PGLy(Zp)
e a unique PGLy(Zp)-invariant Borel probability measure p

e a PGLy(Zp)-invariant metric §, defined for x = [ug : u1] and
y = [w : vi] in PX(Qp) by

|uovi — u1volp

o(x,y) =
) = ol ) - max{[volp: vl

Definition (The projective p-adic Mehta Integral)

The canonical partition function for an N-particle log-Coulomb gas in
P(Q,) is given by

Zn(B) = /P H5 X,,XJ

H@N S




The projective analogue: Rationality

Abbreviated Theorem (W., 2021)

The integral Z}(/) converges absolutely if and only if Re(3) > —2/N.
Like Zn(f), it is a finite sum over splitting chains of order N. Each
summand is a rational function of p and p=# closely resembling I p(B).
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The projective analogue: Rationality

Abbreviated Theorem (W., 2021)

The integral Z}(/) converges absolutely if and only if Re(3) > —2/N.
Like Zn(f), it is a finite sum over splitting chains of order N. Each
summand is a rational function of p and p=# closely resembling I p(B).

Note: This is a special case of a general formula for the integral
/ H 6(Xi7)(j)SU d:u’N
BNV i)

with K any nonarchimedean local field. It converges absolutely for
precisely the same s € C as the integral [, v p(||x]|) [T;<; [xi — xj|* dx,
and the set of such s;; does not depend on K.

i<j
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The projective analogue: An efficient formula

The functions Fp from before are also useful in the projective case:

Theorem (W., 2021)

If Re(8) > —2/N, the value of Z},(8) can be computed efficiently via

log(p) (N+(g/

N 2k
zap) =y I

o (eosn(=2))”

)N Fi(log(p), ) - Fn—«(log(p). 5)




The projective analogue: An efficient formula

The functions Fp from before are also useful in the projective case:

Theorem (W., 2021)

If Re(8) > —2/N, the value of Z},(8) can be computed efficiently via

- Fi(log(p), B) - Fn—«(log(p), B)

Y. cosh (S5 (v+(4)5)(1-%))
zZ* = NI b
n(B) kZ:O (2 cosh('°g2(")))

Corollary (The p — 1 Limit and p — p~! Functional Equation)

The value of Z5, () extends to a smooth function of p € (0, 00) satisfying

lim Z5,(8) = NIZFk(O B)Fn-«(0, 8)

k=0

and Z5(8)|,,,1 = Z4(8).

p—p
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There is also a grand canonical partition function for log-Coulomb gas in
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The (p + 1)th Power Law

There is also a grand canonical partition function for log-Coulomb gas in

Pl(QP):
fN
Z(B,F) =Y Zn(B) 7

N

Theorem (W., 2020)

The grand canonical partition function for log-Coulomb gas in Pl((@p)
satisfies

ZH(8,f) = (2°(8, 55 N))PH
forall 3> 0 and f € C.




The (p + 1)th Power Law

There is also a grand canonical partition function for log-Coulomb gas in

Pl(QP):
ZHB.0) = ZB)
N

Theorem (W., 2020)

The grand canonical partition function for log-Coulomb gas in Pl((@p)
satisfies

ZH(8,f) = (2°(8, 55 N))PH
forall 3> 0 and f € C.

Interpretation: A log-Coulomb gas in P1(Q,) exchanging particles with
the reservoir is the same as p + 1 identical copies of a log-Coulomb gas in
pZp exchanging particles with the reservoir.
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