Estimating a *p*-adic volume via coin problems

Joe Webster

University of Oregon

February 10, 2020

Motivating question

- Fix a prime number p and an integer $N \ge 2$.
- For each tuple ${m x}=(x_1,x_2,\ldots,x_N)\in \mathbb{Z}_p^N$, define

$$\Delta(\mathbf{x}) := \prod_{1 \le i < j \le N} |x_i - x_j|_p$$

- Note $\Delta(\mathbf{x}) \in \{1, \frac{1}{p}, \frac{1}{p^2}, \frac{1}{p^3}, \dots\} \cup \{0\}$ for all $\mathbf{x} \in \mathbb{Z}_p^N$.
- Question: Given $n \in \mathbb{Z}_{\geq 0}$, if x is chosen from \mathbb{Z}_p^N uniformly randomly, what is the probability that $\Delta(x) = p^{-n}$?

What does "coin problem" mean?

Fix a finite set of pairwise coprime "coin sizes" $c_1, c_2, \ldots, c_\ell \in \mathbb{N}$ and let $\mathbf{c} = (c_1, c_2, \ldots, c_\ell)$. For each integer $m \geq 0$, define

$$\mathcal{P}_{\boldsymbol{c},m} := \{ (k_1, k_2, \dots, k_\ell) \in \mathbb{Z}_{\geq 0}^\ell : c_1 k_1 + c_2 k_2 + \dots + c_\ell k_\ell = m \} .$$

Examples of coin problems include:

- What is the largest m such that $\mathcal{P}_{\boldsymbol{c},m} = \varnothing$?
- What is $\#\mathcal{P}_{\boldsymbol{c},m}$ as a function of m?
- How can we describe/parametrize generic elements of $\mathcal{P}_{\boldsymbol{c},m}$?

All of these problems are hard unless $\ell \in \{1, 2\}$.

The precise question and today's goals

If μ is the Haar measure on \mathbb{Z}_p satisfying $\mu(\mathbb{Z}_p)=1$, the probability we want is given by

$$\mathbb{P}\{\Delta(\mathbf{x})=p^{-n}\}=\mu^N(\Delta^{-1}(p^{-n})).$$

How does it vary with N, p, and n?

- **Goal 1**: Derive an effective formula for $\mu^N(\Delta^{-1}(p^{-n}))$.
- **Goal 2**: Use the formula in the N=2 and N=3 cases.
- **Goal 3**: Get an explicit bound for general *N*, *p*, and *n*.

Series representations for $oldsymbol{x} \in \mathbb{Z}_p^N$

• For each $\mathbf{x} \in \mathbb{Z}_p^N$, there is a unique sequence of tuples $(\mathbf{d}(m))_{m \geq 0}$ satisfying $d_i(m) \in \{0, 1, \dots, p-1\}$ and

$$x_i = d_i(0) + d_i(1)p + d_i(2)p^2 + d_i(3)p^3 + \dots$$

for all $i \in \{1, 2, ..., N\}$.

• Key fact: If $x_i \neq x_j$, then

$$|x_i-x_j|_p=p^{-k}\iff \min\{m:d_i(m)\neq d_j(m)\}=k.$$

• In particular, if $\Delta(x) \neq 0$, then

$$\Delta(\mathbf{x}) = p^{-n} \iff \sum_{1 \leq i \leq N} \min\{m : d_i(m) \neq d_j(m)\} = n.$$

Example: A tuple $x \in \mathbb{Z}_5^9$ with $\Delta(x) \neq 0$.

Suppose
$$\mathbf{x} = \mathbf{d}(0) + 5\mathbf{d}(1) + 5^2\mathbf{d}(2) + 5^3\mathbf{d}(3) + \dots$$
, where

Example (continued): The "shape" of x

The tree defines a set of "branches" \mathcal{B}and a corresponding tuple $\mathbf{k} \in \mathbb{N}^{\mathcal{B}}$.


```
B
    {1, 2, 3, 4, 5, 6, 7, 8, 9}
    {1, 2, 3, 4, 5, 6, 7, 8, 9}
   {1, 2, 3, 4, 5}{6, 7, 8, 9}
 {1, 2, 3}{4, 5}{6, 7, 8, 9}
 {1, 2, 3}{4, 5}{6, 7, 8, 9}
 \{1,2,3\}\{4,5\}\{6,7,8,9\}
{1, 2, 3}{4}{5}{6}{7}{8}{9}
\{1, 2, 3\}\{4\}\{5\}\{6\}\{7\}\{8\}\{9\}
{1}{2}{3}{4}{5}{6}{7}{8}{9}
```

Call $(\mathcal{B}, \mathbf{k})$ the shape of \mathbf{x} .

Example (continued): $\Delta(x)$ depends on $(\mathcal{B}, \mathbf{k})$ alone

• **Key fact:** Our series for $x \in \mathbb{Z}_5^9$ satisfies

$$\sum_{1 \leq i < j \leq 9} \min\{m : d_i(m) \neq d_j(m)\} = -\binom{9}{2} + \sum_{\lambda \in \mathcal{B}} \binom{\#\lambda}{2} k_{\lambda}$$
$$= \binom{9}{2} \cdot (2-1) + \binom{5}{2} \cdot 1 + \binom{4}{2} \cdot 4 + \binom{2}{2} \cdot 3 + \binom{3}{2} \cdot 5 = 88,$$

• Therefore $\Delta(x) = 5^{-88}$.

Branches and branch sets

Definition

Given $N \ge 2$, a branch set \mathcal{B} of order N is a collection of subsets $\lambda \subset [N] = \{1, 2, \dots, N\}$ (called branches) satisfying

- (i) $[N] \in \mathcal{B}$,
- (ii) $\#\lambda \geq 2$ for all $\lambda \in \mathcal{B}$, and
- (iii) if $\lambda_1, \lambda_2 \in \mathcal{B}$ satisfy $\lambda_1 \cap \lambda_2 \neq \emptyset$, then $\lambda_1 \subset \lambda_2$ or $\lambda_1 \supset \lambda_2$.

Write \mathcal{R}_N for the set of all branch sets of order N.

- Ex: $\mathcal{B} = \{[9], \{1, 2, 3, 4, 5\}, \{6, 7, 8, 9\}, \{4, 5\}, \{1, 2, 3\}\} \in \mathcal{R}_9$
- Fact: $1 \le \#\mathcal{R}_N \le 2^{N-1}(N-1)!$ for all $N \ge 2$.

Some technical definitions

Definition

The *degree* of a branch $\lambda \in \mathcal{B}$ is defined by

$$\deg_{\mathcal{B}}(\lambda) = \#\lambda - \sum_{\lambda'} (\#\lambda' - 1),$$

where the sum $\sum_{\lambda'}$ is over all maximal $\lambda' \in \mathcal{B}$ such that $\lambda' \subsetneq \lambda$.

Definition

Given a prime p, the p-multiplicity $M_{\mathcal{B},p}$ of a branch set \mathcal{B} is

$$M_{\mathcal{B}, p} := \prod_{\lambda \in \mathcal{B}} (p-1)_{\deg_{\mathcal{B}}(\lambda)-1} \; .$$

• Fact: If $\mathcal{B} \in \mathcal{R}_N$, then $0 \le M_{\mathcal{B},p} \le ((p-1)!)^{N-1}$ for all p.

Theorem (W.)

For each $\mathcal{B} \in \mathcal{R}_N$ and every $\mathbf{k} \in \mathbb{N}^{\mathcal{B}}$, define

$$\mathcal{T}(\mathcal{B}, \mathbf{k}) := \{ \mathbf{x} \in \mathbb{Z}_p^N : \mathbf{x} \text{ has shape } (\mathcal{B}, \mathbf{k}) \}$$
 .

(a) We have a countable decomposition

$$\mathbb{Z}_p^N = \Delta^{-1}(0) \sqcup \bigsqcup_{\mathcal{B} \in \mathcal{R}_N} \bigsqcup_{\boldsymbol{k} \in \mathbb{N}^{\mathcal{B}}} \mathcal{T}(\mathcal{B}, \boldsymbol{k}) \; .$$

(b) Each $\mathcal{T}(\mathcal{B}, \textbf{k})$ is open and compact with measure

$$\mu^{N}(\mathcal{T}(\mathcal{B}, \mathbf{k})) = M_{\mathcal{B}, p} \cdot \prod_{\lambda \in \mathcal{B}} p^{-(\# \lambda - 1)k_{\lambda}}.$$

(c) We have $\Delta(\mathbf{x}) = p^{\binom{N}{2} - \sum_{\lambda \in \mathcal{B}} \binom{\#\lambda}{2} k_{\lambda}}$ for all $\mathbf{x} \in \mathcal{T}(\mathcal{B}, \mathbf{k})$.

An exact solution in terms of shapes

Corollary

For any $N \ge 2$, prime p, and integer m, we have

$$\mu^{N}(\Delta^{-1}(p^{\binom{N}{2}-m})) = \sum_{\mathcal{B} \in \mathcal{R}_{N}} M_{\mathcal{B},p} \cdot \sum_{\mathbf{k} \in \mathcal{K}_{\mathcal{B},m}} \prod_{\lambda \in \mathcal{B}} p^{-(\#\lambda-1)k_{\lambda}}$$

where

$$\mathcal{K}_{\mathcal{B},m} := \left\{ oldsymbol{k} \in \mathbb{N}^{\mathcal{B}} : \sum_{\lambda \in \mathcal{B}} inom{\#\lambda}{2} k_{\lambda} = m
ight\}.$$

• Fact: If $\mathcal{B} \in \mathcal{R}_N$ and $m \geq \binom{N}{2}$, then $\#\mathcal{K}_{\mathcal{B},m} \leq m^{\#\mathcal{B}} \leq m^{N-1}$.

Example: N = 2

- (i) $\mathcal{B} = \{\{1,2\}\}$ is the only branch set of order 2.
- (ii) The p-multiplicity is $M_{\mathcal{B},p}=(p-1)_{2-1}=p-1>0$ for all p.

(iii)
$$\mathcal{K}_{\mathcal{B},m} = \{k \in \mathbb{N} : k = m\} = \begin{cases} \{m\} & \text{if } m \geq 1, \\ \emptyset & \text{otherwise.} \end{cases}$$

Then
$$\mu^2(\Delta^{-1}(p^{1-m}))=(p-1)\cdot p^{-(2-1)m}=rac{p-1}{p^m}$$
 if $m\geq 1$, so
$$\mathbb{P}\{\Delta(\pmb{x})=p^{-n}\}=rac{p-1}{p^{n+1}}\;.$$

Example: N = 3

(i) All branch sets of order 3:

$$\begin{split} \mathcal{B}_0 &= \big\{\{1,2,3\}\big\},\\ \mathcal{B}_1 &= \big\{\{1,2,3\},\{1,2\}\big\},\\ \mathcal{B}_2 &= \big\{\{1,2,3\},\{1,3\}\big\},\\ \mathcal{B}_3 &= \big\{\{1,2,3\},\{2,3\}\big\}. \end{split}$$

(ii) The corresponding *p*-multiplicities:

$$egin{aligned} &M_{\mathcal{B}_0,p}=(p-1)_2 & (=0 ext{ if } p=2), \ &M_{\mathcal{B}_1,p}=(p-1)^2, \ &M_{\mathcal{B}_2,p}=(p-1)^2, \ &M_{\mathcal{B}_3,p}=(p-1)^2. \end{aligned}$$

Example: N = 3 (continued)

(iii) Since

$$\mathcal{K}_{\mathcal{B}_0,m} = \{k \in \mathbb{N} : 3k = m\} = \begin{cases} \{m/3\} & \text{if } m \in 3\mathbb{N}, \\ \emptyset & \text{otherwise}, \end{cases}$$

we get a summand

$$M_{\mathcal{B}_0,p}\cdot\sum_{\mathbf{k}\in\mathcal{K}_{\mathcal{B}_0,m}}\prod_{\lambda\in\mathcal{B}_0}p^{-(\#\lambda-1)k_\lambda}=\mathbf{1}_{3\mathbb{N}}(m)(p-1)_2p^{-2m/3}$$
.

For each $i \in \{1, 2, 3\}$ we have

$$\mathcal{K}_{\mathcal{B}_i,m} = \left\{ (k_1, k_2) \in \mathbb{N}^2 : 3k_1 + k_2 = m \right\}$$

= \{ (k, m - 3k) : 1 \le k \le \| (m - 1)/3 \| \}

and we get a summand

$$M_{\mathcal{B}_i,p} \cdot \sum_{\mathbf{k} \in \mathcal{K}_{\mathcal{B}_i,m}} \prod_{\lambda \in \mathcal{B}_i} p^{-(\#\lambda-1)k_{\lambda}} = (p-1)^2 p^{-m} \sum_{k=1}^{\lfloor (m-1)/3 \rfloor} p^k.$$

Example: N = 3 (continued)²

Thus, for $m \ge 3$ we have

$$\mu^{3}(\Delta^{-1}(p^{3-m})) = \mathbf{1}_{3\mathbb{N}}(m)(p-1)_{2}p^{-2m/3} + 3(p-1)^{2}p^{-m}\sum_{k=1}^{\lfloor (m-1)/3\rfloor}p^{k}$$

and hence

$$\mathbb{P}\{\Delta(\mathbf{x}) = p^{-n}\} = \mathbf{1}_{3\mathbb{N}}(n+3)(p-1)_2 p^{-2(n+3)/3} + 3(p-1)^2 p^{-(n+3)} \sum_{k=1}^{\lfloor (n+2)/3 \rfloor} p^k.$$

Challenges in the $N \ge 4$ cases

- When $N \geq 4$, there are $\mathcal{B} \in \mathcal{R}_N$ with $\#\mathcal{B} \geq 3$ and $M_{\mathcal{B},p} > 0$.
- \bullet In order to calculate the summand for such ${\cal B},$ we would need to explicitly describe all elements of

$$\mathcal{K}_{\mathcal{B},m} := \left\{ oldsymbol{k} \in \mathbb{N}^{\mathcal{B}} : \sum_{\lambda \in \mathcal{B}} inom{\#\lambda}{2} k_{\lambda} = m
ight\}.$$

- Even if all $\binom{\#\lambda}{2}$ are relatively prime, this is an open problem!
- For large N, it is also challenging to tabulate all $\mathcal{B} \in \mathcal{R}_N$ and their corresponding p-multiplicities.

The good news for general N, p, and n:

Recall the (crude) bounds from before:

- $\#\mathcal{R}_N \le 2^{N-1}(N-1)!$ for all $N \ge 2$
- $M_{\mathcal{B},p} \leq ((p-1)!)^{N-1}$ for all $N \geq 2$ and all p
- $\#\mathcal{K}_{\mathcal{B},m} \leq m^{N-1}$ for all $\mathcal{B} \in \mathcal{R}_N$ and all $m \geq {N \choose 2}$
- If $\mathbf{k} \in \mathcal{K}_{\mathcal{B},m}$, then $\prod_{\lambda \in \mathcal{B}} p^{-(\#\lambda 1)k_{\lambda}} \leq p^{-\frac{2m}{N}}$.

Corollary

For any integers $N \ge 2$ and $m \ge {N \choose 2}$ and any prime p, we have

$$\mu^{N}(\Delta^{-1}(p^{\binom{N}{2}-m})) \leq (2m(p-1)!)^{N-1}(N-1)!p^{-\frac{2m}{N}}.$$

A fun last remark

Given N and p, there is a positive constant C(N, p) such that

$$\mathcal{P}\{\Delta(\mathbf{x}) = p^{-n}\} \le C(N, p) \cdot p^{-\frac{n}{N}}$$
 for all $n \ge 0$.

