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Motivating question

e Fix a prime number p and an integer N > 2.

e For each tuple x = (x1,x2,...,xn) € Z, define
Ax):= T Ixi—xlo
1<i<j<N

e Note A(x) € {1,%,#,%,...}&%{0} for all XEZLV.

* Question: Given n € Zxg, if x is chosen from ZQ’ uniformly
randomly, what is the probability that A(x) = p~"?



What does “coin problem” mean?

Fix a finite set of pairwise coprime “coin sizes’ ¢, ¢,...,¢ €N
and let ¢ = (¢, ¢, ..., cp). For each integer m > 0, define

Pc,m = {(kl, k2, ey kg) € ZZZO : C1k1 + C2k2 —+ -+ Cgkg = m} .
Examples of coin problems include:

e What is the largest m such that P¢p, = @7

e What is #Pc m as a function of m?

e How can we describe/parametrize generic elements of P¢ m?

All of these problems are hard unless ¢ € {1,2}.



The precise question and today's goals

If 11 is the Haar measure on Z,, satisfying 1(Z,) = 1, the
probability we want is given by

P{A(x) = p~"} = (A1 (p ")) .

How does it vary with N, p, and n?
e Goal 1: Derive an effective formula for uV(A=1(p~")).
e Goal 2: Use the formula in the N =2 and N = 3 cases.

e Goal 3: Get an explicit bound for general N, p, and n.



Series representations for x € Z,’;’

e For each x € ZS’, there is a unique sequence of tuples
(d(m))m>o satisfying dj(m) € {0,1,...,p— 1} and

xi = di(0) + di(1)p + di(2)p* + di(3)p> + . ..
for all i € {1,2,..., N}.
o Key fact: If x; # x;, then
X —xjlp=p % <= min{m:di(m)#di(m)} = k.
e In particular, if A(x) # 0, then

Ax)=p " <= Z min{m : d;(m) # d;j(m)} = n.
1<i<j<N



Example: A tuple x € Z2 with A(x) # 0.

Suppose x = d(0) + 5d(1) + 5%2d(2) +53d(3) + ..., where
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Example (continued): The “shape” of x

The tree defines a set of “branches” ... B
...and a corresponding tuple k € NB.

\k{1,2,374,5,677.8,9} =2 {1 2,3,4,5,6,7,8, 9}

k67,80 =4 {1 2,3,4, 5}

k{12345}*1/

k{123} /

X1 X2 X3 X4 X5 Xe X7 Xg X9

{4 5}{6 7 8, 9}

{1.2.31 4} {5}{6)
{4}{5}{6}{7}{8}{9}

{123}

Call (B, k) the shape of x.



Example (continued): A(x) depends on (B, k) alone

o Key fact: Our series for x € Z2 satisfies
Z min{m : di(m) # d;j(m)} = —(2) + Z (#;)\) kx
1<i<j<9 XeB

() e (2) e (s (2) 5 (2) s

e Therefore A(x) =578,



Branches and branch sets

Definition
Given N > 2, a branch set B of order N is a collection of subsets
A C [Nl ={1,2,...,N} (called branches) satisfying

(i) [N] € B,

(i) #X > 2 for all A € B, and
(iii) if A1, Ao € B satisfy A\ N Ay # &, then A\ C A or A1 D Ap.
Write Ry for the set of all branch sets of order N.

e Ex: B=1{[9],{1,2,3,4,5},{6,7,8,9},{4,5},{1,2,3}} € Ro

e Fact: 1 < #Ry <2V-Y(N —1)! for all N > 2.



Some technical definitions

Definition
The degree of a branch A € B is defined by

degis(A) = #A — > _(#N' - 1),
A/
where the sum )", is over all maximal X" € B such that X C .

Definition
Given a prime p, the p-multiplicity Mg , of a branch set B is

Mp,p == H(P — D)degp()—1 -
AeB

e Fact: If B € Ry, then 0 < Mg, < ((p— 1)HN=1 for all p.



Theorem (W.)

For each B € Ry and every k € NB define
T(B, k) :={x € Zﬁ’ . x has shape (B, k)} .
(a) We have a countable decomposition

zy=n"to)u || | ] 7B k).

BeRy keNB
(b) Each T(B, k) is open and compact with measure

MN(T(B, k)) = Mg, - H p—(#k—l)lo\ )
AeB

N
2

(c) We have A(x) = p(2)"Zes (5)k for all x e T(B, k).



An exact solution in terms of shapes

Corollary
For any N > 2, prime p, and integer m, we have

MA O ™) = 3 M, T[] e

BeRy keKp,m \eB

Kpm = {k eNF: ) C‘?)kA = m}.

AeB

where

e Fact: If Be Ry and m > (g’) then #Kp,m < m#B < mN-1,



Example: N =2

(i) B={{1,2}} is the only branch set of order 2.
(ii) The p-multiplicity is Mg, = (p —1)2—1 = p—1 >0 for all p.

{m} ifm>1,

%} otherwise.

(”I) KB,m:{kENZk:m}:{

Then p2(A~Y(p ™) = (p—1) - p~ - Vm = %_ml if m>1, so

-1
P(a()=p ") =0



Example: N =3

(i) All branch sets of order 3:

Bo = {{1,2,3}},

Bl = {{17273}?{1’2}}7
B> = {{1,2,3},{1,3}},
Bs = {{1,2,3},{2,3}}.

(i) The corresponding p-multiplicities:

Mg, p = (p—1)2 (=0if p=2),
Mg, p = (p— 1)2,
Mg,p = (p — 1)2a
Mg, p = (p — 1)2-



Example: N = 3 (continued)

(iii) Since
3} if me3N,
ICBo,m:{kEN;3k:m}:{{m/} if m |
%) otherwise,

we get a summand
Moo Y JT P70 = 1au(m)(p — 1)2p~"" .
keKpy,m AeBo
For each i € {1,2,3} we have
Kpm = {(ki, ko) € N? : 3ky + ko = m}
={(k,m—3k): 1< k< [(m—1)/3]}
and we get a summand

L(m 1)/3]

M 30 Lo 0 =(e-1% 30 "

kekg;,m AEB;



Example: N = 3 (continued)?

Thus, for m > 3 we have

L(m—1)/3]
(ATP™) = Lan(m)(p = 1)ap > +3(p =177 Y p*

and hence

[(n+2)/3]
P{A(x) = p~"} = Lsn(n+3)(p—1)2p~ A+3)/343(p—1)2p~("+3) Z o,



Challenges in the N > 4 cases

When N > 4, there are B € Ry with #8 > 3 and Mg, > 0.

In order to calculate the summand for such B, we would need
to explicitly describe all elements of

Kpm = {keNB > @A)h = m}.

AeB

Even if all (#2’\) are relatively prime, this is an open problem!

For large N, it is also challenging to tabulate all B € Ry and
their corresponding p-multiplicities.



The good news for general N, p, and n:

Recall the (crude) bounds from before:

o #Ry < 2N"1(N —1)! forall N > 2
o Mg, <((p— 1))V forall N >2andall p
o #Kpm < mN~!forall Be Ry and all m> (%)

o If k € Kpm, then [],cp p~#A-Dk < p_ZWm.

Corollary
For any integers N > 2 and m > (g’) and any prime p, we have

PN (pE)=m) < @m(p — YNV - 1)p7F



A fun last remark

Given N and p, there is a positive constant C(N, p) such that

P{A(x)=p "} < C(N,p)-p W for all n > 0.



Thank you!



