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The known story for R

¢ A one-dimensional log-Coulomb gas (or log-gas) is a system
of N > 2 point charges g1, g, ...,qy > 0 constrained to a
line and subject to a “repulsive log-Coulomb potential.”

e Let x; € R be the location of g; and call X = (x1,x2,...,xyn)
a microstate. Let T > 0 be a fixed temperature.

e Define the potential energy of a microstate X € RN by
V(%) = ST |
(%) = 5 TIIXI" ~ ;q;qj og |xi — x| -
i<j

e Rough interpretation: A microstate has high energy if charges
are far from the origin (the quadratic term) or close together
(the logarithmic term).



The known story for R (continued)

Call g = % the “coldness” of the system and set 3 := q;q;
for all i <.

Define the canonical partition function Zy by

_ X = — L2 o
zN(g);:/RNe BV()dX:/RNe HIRIE T s — 1% d%

i<j

Fundamental idea of Boltzmann statistics: The microstates
o N o ; 1 —BV(X)

X € R"™ have probability density Ze (B € .

Rough interpretation: High energy microstates are less
probable. This effect is more severe if the system is cold
(8> 0) and less severe if the system is hot (3 = 0).



The known story for R (continued)

e It is hard to compute Zy(/3) for general g;. In the special case
gi =1 for all i, we have f3j; = 3 for all jj and Zy(3) becomes
the value known as Mehta’s integral:

2112 1+/8/2
/ P Lo -5l ds = 2 N/ZHFHJB//z

i<j

e FEarly 1960's: Mehta and Dyson proved the above formula
only for 8 =1,2,4, while developing random matrix theory.

o Late 1970's: A lucky encounter with Selberg's integral led
Bombieri to a clever proof. It is valid for all complex § at
which the integral converges.



Motivating questions

e How do things change if we replace R with a non-archimedean
local field, such as Q,? What becomes easier/harder?

o Are there interesting properties common to p-adic log-gases
and real log-gas? Is there a unified way to handle them all?

e What do these “local log-gases” together imply about adele
rings and idele groups of number fields?

e Today's goal: Discuss the first question and some examples.



Basic setup of a nonarchimedean local field

e Let K be a non-archimedean local field with discrete valuation
v:K — ZU{oo}. Recall v(x +y) > min{v(x), v(y)} with
v(0) = o0, and v is a homomorphism of (K*, ) onto (Z, +).

e 0:={xeK:v(x)>0}isaDVR, m:={x € K:v(x) >0}
is its maximal ideal, and local compactness of K provides a
unique integer g = p’ satisfying o/m=TF,.

e Note K is one of the following:

e a finite extension of Q, with v a rescaled extension of ord,
o the field Fq((t)) of formal Laurent series with v = ord,

e Pick the absolute value | - | on K satisfying |x| = ¢~¥¥), note
o={xeK:|x| <1} and m={xe K:|x| <1}.

e Pick the additive Haar measure p satisfying u(0) = 1.



log-gas in K

e Suppose q1,G2,...,9n >0, 3> 0, and B = q;q; as before.
Now suppose g; is located at x; € K and define the potential
energy of a microstate X € KN by

V(%) = —Z,<j qgigjlog|x; — x| if all x; € o,
' 00 otherwise.

e Set dx := duN(X) and define the canonical partition function:
Zn(B) = / V¥ dx = / H x; — x| dx .
KN i<j

e The microstates X € KN have probability density

1 S
_/BV(X) — BU .
Zu(8)¢ Z (5 R 1L =

i<j



A preview of Zy(f3) values
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Average values

e The expectation (or average value) of a Borel measurable
function f : oV — C is

e Some meaningful examples of f(X)

E[f(X)] == ZNl(m / F() T s — 1% d%
0 i<j

—

[1; Ixi| = an unramified quasicharacter of (K*)" (s; € C)

min v(x; — x;) = min{n : x; # x; mod m"**

for some i < j}
1<J

max v(x; — x;) = min{n : x; Z x; mod m"** for all j < j}
i<j

V(X) = the total potential energy of the system

min |x; — xj| = the minimum distance between charges
1<J

max |x; — xj| = the diameter of the gas
1<J



Example: eight unit charges in Z3

A microstate X € Z§ with...
o IT bl = 370

ol — x) = O
* minv(x =)

e maxv(x —x) =5
0 1<J

e V(X) =2T7log(3)

o min|x — x| =37
1<J

o max|x; — x| =1
1<J



Expectation of quasicharacters and energy

—

e Unramified quasi-characters: Given 5 = () as before and
(s1,52,...,5n) € CN with R(s;) > —1, set Bi(n41) = si and

Ziva(9) = [, TLba i s
° i<j

A simple change of variables gives

Zivoa(®) = [ TL Il T b~ 5l 0
ot

i<j

and hence E[]]; | Xi|%] = Zgﬁg)

e Potential energy: d% can pass through the integral for Zy, so

E[V(X)] = jﬁ log Zu(5) .



Expectation of max's and min's

e For ay,a0 > 0 and nq, ny € Z>, define
f(d, 1, X) := (maxv(x — x))™ (min v(x; — x;))"(min |x; — x|)°* (max |x; — x;|)
i<j i< i<j

i<j

e An important auxiliary function: Define

Fn(@, B) ::/ (min |x;— XJ|)a1(max|x, x| O‘21_[|X —x;|Pi dx
(m

N 1<
) J i<j

for all suitable (&, 3) € C2 x c().
e If 3> 0and 3 = qgiq;3 as before, note

E[f(d@, 7, X)] = (Ioé(lq) a%)m (Ioé({q)a%z)m [qaﬁw'%] ‘




o Iff= (Bii<i<j<n with B = qiq;3 and B’ = (Bij)1<i<j<ni1
with Bjn41) = si (where 3 >0 and R(s;) > —1), then

Zn(B) = qN+Zlgi<j§Nf3if . FN(O’B') ’

Zya(B) = gVt Xasiciena B L Fy (0, )

i s — 1-1—2, Si . FN+1(0»E/)
and hence E[[]; | Xi|%] = q TR0

e Big idea: The canonical partition function Zy(f3) and the

expectations E[[]; | X;|*], E[V(X)], and E[f(&, 7, X)] can all
be expressed in terms of F.

e We will show that Fp can be computed via combinatorics.



A combinatorial gadget

Definition
Let L be a positive integer. A splitting sequence of N is a tuple
A= (Ao, A1,...,AL_1) of compositions (i.e., ordered partitions)

A =D AR AT E N such that
1=Ny< N <Np<---<N =N.

Call L(X) := L the length of X and denote the set of all splitting

sequences of N by th(N).

Example
The tuple X = (3, [1,1,4], [2,1,1,1,2,1], [1,2,1,1,1,1,1,1]) is
a length 4 splitting sequence of 9.



Other ways to think about a splitting sequence

Our definition of splitting sequences has been chosen for brevity.
There are two equivalent and useful alternatives.

Example

No=1
Ny =3
N, =6
Nz =8
Ny=9

X = ([3]7 [17 174]7 [27 17 17 1727 1]7 [1727 17 11 17 ]-7 17 1])

I

N ={1,2,3}{4}{5,6,7,8,9}

N2 = {1,2,3H{4}{5}{6}{7,8}{9}



Special symbols associated to a splitting sequence

o If e M(N) and Ao, Ag, ... ’AL(X)—I are the corresponding
partitions of {1,2,..., N}, denote the mth part of A; by /\gm).
Definition

For each X € M(N) and £ € {0,1,...,L(X) — 1}, define the /th
multiplicity and /th exponent respectively by

= /o
My(X, n) = H S and

m=1 £

N,
El@, B, X) = o1 + Sorca + A -1+ > Bi
m=1 i<j

ijen™



X= (3], [1,1,4], [2,1,1,1,2,1], [1,2,1,1,1,1,1,1])

hd /\0 = {1,2,3,4,5,6,7,8,9}
- 1 - -
MO()\ﬂn)_<n>7 EO(O_Z,,B,)\):OQ—FOQ—FS—F Z B’J
1<i<j<9
e N\; ={1,2,3}{4}{5,6,7,8,9}
- 1/n R
min=1(}), BE@IN-atsr 3 5

n\4 —
1<i<j<3
5<i<j<9

o N2 ={1,2,3H{4}{5}{6}{7,8}{9}

Ma(X, n) = [,17 <g>} . Ex(@, B, X) = a1+3+Bra+B13+Bas+Brs
o A3 ={1}{2,3}{4}{5}{6}{7}{8}{9}

- 1/n —
Ms(X, n) = . (2)7 E3(d,B,A) = a1 + 14 B3



An explicit formula for Fy

e Define o(f) := (Bo-1(iyo-1(j)) If o € Sy and define open sets

-, -,

)
Q= {(a@, B) : R(E(a,(B), X)) > 0 for all o, X, £},
{

),
Q= {(@,5) : E(d,0(B), N) ¢ =5 for all o, X, £} .

Theorem (W.)
The function Fy defined by

Fu(@, f) = /( i b —sl)"(max s T b1 0%

NoI<
J i<j

is analytic on QT and extends to all of Q via

L(X)—1

My(X, q)
a2 X e

UGSNAem (N) =0 9




A fun corollary

e Forall ¢ € Sy and all X € M(N) we have

Eo(d@,o(F),N) =c1+az+ N -1+ B

i<j

so (qEO(a"’(E)’X) — 1)1 is independent of o and X and factors
out of the whole sum.

-,

o If £>0, E/(a,o(f), X) is independent of .
Corollary
If >0, 8 >0, and Bj; = qiq;f3, then

qN*1+Z;<J‘ IBU _ 1
qN71+ZI<_{B’J —

E[(max |X; — X;1)°] = — .
i<j qg



Another fun corollary

e If a1 = ap =0 and all g; = 1, then 3;; = 3 for all ij, then

3, i 1y S (1A A
m=1

for all 0 € Sy and we get an analogue of Mehta's integral:

Corollary

L(X)—1

ATT 1 — 18 d — Nig(D)8 My(X, q)
/KN].UN(X)H|X,—XJ‘ dX—NIq(Q) Z H WX)_]_ .

i<j Semny =0 9



Recursive construction of Mm(/N)

AA\AXA

All splitting sequences in M(N) can be constructed by adding
nodes and edges to those in M(N — 1). An inductive argument
gives |h(N)| < (2N — 3)!! with equality only if N =2 or N = 3.



Zn(B) values revisited

e Everything simplifies considerably when all g; = 1:

_ 1P
° ZZ(ﬂ) = (:BJ),q]_

_ 38 —
o 23(8) = SHT - [(a-2) + Y]

(g—1)q% {(q—2)(q—3)+ 6(q —1)(q9 —2)

Z4(ﬁ) = q65+3 —1 q5+1 1
R 12(g 1)
-1 (@)

L 3g-1)p }

(qIB+1 _ 1)2



Thank you!



