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The mth Bernoulli number is defined to be the coefficient of z™/m! in the Taylor expansion for
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which converges absolutely when |z| < 27. It is stralghtforward to verify that the even and odd parts
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when |z| < 27. The righthand equation shows that B; = f% and Bggi1p = 0 for all £ > 1, and
evaluating the lefthand equation at z = 2miw shows that
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A formula for ¢(20) = >"°7 ﬁ can be found for any positive integer ¢ by expanding 7w cot(mw)
as a sum over its poles and recombining it into a power series in w. The main goal of this note is
to establish the same formula (and a little more) using Fourier series instead. To this end, we define
a sequence of 1-periodic functions P, : R — R via Py(z) := {2} — % (where {z} = 2 — [z] is the

fractional part of ) and
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P (z) = By + m/ P,,_1(t)dt for all m > 2.
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Obviously P,,,(0) = B, for all m > 1, and it is a good exercise to verify that P,, is indeed 1-periodic,
smooth on R\ Z for m > 1, and continuous on R if m > 2. In fact, for every m > 1, P, (z) is a

polynomial in {z} (but not in ), and is thus called the mth periodic Bernoulli polynomial.

The Basel Problem

The Fourier series Y - cn€®™ M for the 1-periodic function Py(z) = {}* — {z} + ¢ is given by
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Since P5 is continuous and piecewise smooth, a theorem of Dirichlet implies that the Fourier series

converges uniformly to P, on R. In particular,
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Py(x) for all z € R. (0.0.2)
The solution to the Basel problem (i.e., {(2) =

sides of (0.0.2) at z = 0.

= %) follows immediately by evaluating both

Formulas for P, (x) and ((4),((6),((8)...

The recursive definition of P, the operator I|g ;) defined by Ijg . (f t) dt, and a straightforward

=l !

induction argument give the formula
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where [ [’g ] stands for (m — 2)th iterate of the operator Ijg ;). It can also be applied to the uniformly

convergent sum for P in (0.0.2) term-by-term as many times as we like:
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By keeping track of the two sums that emerge (or more carefully, by induction), we conclude that
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On the other hand, we know that Byyi1 = 0 for all £ > 1, and thus
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so we can regroup (0.0.3) as
Lm/2] - oo

m (26) m—24 m! 2mine m —2Tine
- (ar) [P G0 = 3 e (27 0mee
Lm/2] - )

m (26) m—20 m! 2rinz—5m —(2rinz—Sm)
; (24) Bt on )%C(%) v nz::l 2rn)™ (¢ te )
Lm/2] q )

m 2(20)! Y 2-m!

2 <2€> _BQZ + iy (28)_ x - ;::1 Grn)m cos (27mx - fm>




If m is odd and greater than 4, we can see that the polynomial > L;ZQ/ 2] (57) {ng + é(jf))z'@ (26)} am—2t
has positive degree and no constant term, but P,,(x) is bounded on R (because it is continuous and
periodic) and the rightmost sum of cosines is also bounded on R (because it is uniformly convergent),
so it must be the case that Bay + éffg&(%) =0 for all £ € {2,3,...,|m/2]}. Since m can be
arbitrarily large and since we already solved the £ = 1 case (the Basel problem), we conclude with the

following theorem:
Theorem 0.1.

(a) For any integer £ > 1, the sum ((2¢) = > °7

et —ngg is given by
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(b) For m > 2, the periodic Bernoulli polynomial can be expressed as an absolutely uniformly

convergent series:

2-m! o= 1
P, (x) = 7(27:)71 Z o €08 (27m9: — gm) .

n=1

(To play with some visual examples, check out this Desmos example.)


https://www.desmos.com/calculator/vlyzrs79lv

