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The mth Bernoulli number is defined to be the coefficient of zm/m! in the Taylor expansion for
z

ez−1 . That is,

z

ez − 1
=

∞∑
m=0

Bm
m!

zm,

which converges absolutely when |z| < 2π. It is straightforward to verify that the even and odd parts

of z
ez−1 are respectively z

2 ·
ez+1
ez−1 and − z2 , and therefore

z

2
· e

z + 1

ez − 1
=

∞∑
k=0

B2k

(2k)!
z2k and − z

2
=

∞∑
k=0

B2k+1

(2k + 1)!
z2k+1

when |z| < 2π. The righthand equation shows that B1 = − 1
2 and B2k+1 = 0 for all k ≥ 1, and

evaluating the lefthand equation at z = 2πiw shows that

πw cot(πw) =

∞∑
k=0

(2π)2k(−1)kB2k

(2k)!
w2k when |w| < 1. (0.0.1)

A formula for ζ(2`) =
∑∞
n=1

1
n2` can be found for any positive integer ` by expanding πw cot(πw)

as a sum over its poles and recombining it into a power series in w. The main goal of this note is

to establish the same formula (and a little more) using Fourier series instead. To this end, we define

a sequence of 1-periodic functions Pm : R → R via P1(x) := {x} − 1
2 (where {x} = x − bxc is the

fractional part of x) and

Pm(x) = Bm +m

∫ x

0

Pm−1(t) dt for all m ≥ 2.

Obviously Pm(0) = Bm for all m ≥ 1, and it is a good exercise to verify that Pm is indeed 1-periodic,

smooth on R \ Z for m ≥ 1, and continuous on R if m ≥ 2. In fact, for every m ≥ 1, Pm(x) is a

polynomial in {x} (but not in x), and is thus called the mth periodic Bernoulli polynomial.

The Basel Problem

The Fourier series
∑∞
n=−∞ cne

2πinx for the 1-periodic function P2(x) = {x}2 − {x} + 1
6 is given by

c0 =
∫ 1

0
P2(x) dx = 0 and

cn =

∫ 1

0

P2(x)e−2πinx dx =
1

2π2n2
= −2 · 1

(2πin)2
for all n 6= 1.
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Since P2 is continuous and piecewise smooth, a theorem of Dirichlet implies that the Fourier series

converges uniformly to P2 on R. In particular,

P2(x) = −2

∞∑
n=1

e2πinx + e−2πinx

(2πin)2
for all x ∈ R. (0.0.2)

The solution to the Basel problem (i.e., ζ(2) =
∑∞
n=1

1
n2 = π2

6 ) follows immediately by evaluating both

sides of (0.0.2) at x = 0.

Formulas for Pm(x) and ζ(4), ζ(6), ζ(8)...

The recursive definition of Pm, the operator I[0,x] defined by I[0,x](f) =
∫ x
0
f(t) dt, and a straightforward

induction argument give the formula

Pm(x) =

m−3∑
k=0

(
m

k

)
Bm−kx

k +
m!

2!
· Im−2[0,x] (P2) for all m ≥ 2, (0.0.3)

where Im−2[0,x] stands for (m− 2)th iterate of the operator I[0,x]. It can also be applied to the uniformly

convergent sum for P2 in (0.0.2) term-by-term as many times as we like:

I3−2[0,x](P2) = −2

∞∑
n=1

e2πinx − e−2πinx

(2πin)3

I4−2[0,x](P2) = −2

∞∑
n=1

e2πinx + e−2πinx

(2πin)4
+ 4 · ζ(4)

(2πi)4

I5−2[0,x](P2) = −2

∞∑
n=1

e2πinx − e−2πinx

(2πin)5
+ 4 · ζ(4)

(2πi)4
x

I6−2[0,x](P2) = −2

∞∑
n=1

e2πinx + e−2πinx

(2πin)6
+ 4

(
ζ(4)

(2πi)4
x2

2!
+

ζ(6)

(2πi)6

)
...

By keeping track of the two sums that emerge (or more carefully, by induction), we conclude that

m!

2!
· Im−2[0,x] (P2) =

bm/2c∑
`=2

(
m

2`

)
2(2`)!

(2πi)2`
ζ(2`)xm−2` −

∞∑
n=1

m!

(2πin)m
(
e2πinx + (−1)me−2πinx

)
.

On the other hand, we know that B2`+1 = 0 for all ` ≥ 1, and thus

m−3∑
k=0

(
m

k

)
Bm−kx

k =

m∑
k=3

(
m

k

)
Bkx

m−k =

bm/2c∑
`=2

(
m

2`

)
B2`x

m−2` ,

so we can regroup (0.0.3) as

Pm(x) =

bm/2c∑
`=2

(
m

2`

)[
B2` +

2(2`)!

(2πi)2`
ζ(2`)

]
xm−2` −

∞∑
n=1

m!

(2πin)m
(
e2πinx + (−1)me−2πinx

)
=

bm/2c∑
`=2

(
m

2`

)[
B2` +

2(2`)!

(2πi)2`
ζ(2`)

]
xm−2` −

∞∑
n=1

m!

(2πn)m

(
e2πinx−

πi
2 m + e−(2πinx−

πi
2 m)

)

=

bm/2c∑
`=2

(
m

2`

)[
B2` +

2(2`)!

(2πi)2`
ζ(2`)

]
xm−2` −

∞∑
n=1

2 ·m!

(2πn)m
cos
(

2πnx− π

2
m
)
.
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If m is odd and greater than 4, we can see that the polynomial
∑bm/2c
`=2

(
m
2`

) [
B2` + 2(2`)!

(2πi)2`
ζ(2`)

]
xm−2`

has positive degree and no constant term, but Pm(x) is bounded on R (because it is continuous and

periodic) and the rightmost sum of cosines is also bounded on R (because it is uniformly convergent),

so it must be the case that B2` + 2(2`)!
(2πi)2`

ζ(2`) = 0 for all ` ∈ {2, 3, . . . , bm/2c}. Since m can be

arbitrarily large and since we already solved the ` = 1 case (the Basel problem), we conclude with the

following theorem:

Theorem 0.1.

(a) For any integer ` ≥ 1, the sum ζ(2`) =
∑∞
n=1

1
n2` is given by

ζ(2`) = − (2πi)2`B2`

2(2`)!
=

(2π)2`|B2`|
2(2`)!

.

(b) For m ≥ 2, the periodic Bernoulli polynomial can be expressed as an absolutely uniformly

convergent series:

Pm(x) = − 2 ·m!

(2π)m

∞∑
n=1

1

nm
cos
(

2πnx− π

2
m
)
.

(To play with some visual examples, check out this Desmos example.)
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https://www.desmos.com/calculator/vlyzrs79lv

