The Fourier series of Bernoulli polynomials

Joe Webster

November 10, 2021

The m th Bernoulli number is defined to be the coefficient of z^{m} / m ! in the Taylor expansion for $\frac{z}{e^{z}-1}$. That is,

$$
\frac{z}{e^{z}-1}=\sum_{m=0}^{\infty} \frac{B_{m}}{m!} z^{m}
$$

which converges absolutely when $|z|<2 \pi$. It is straightforward to verify that the even and odd parts of $\frac{z}{e^{z}-1}$ are respectively $\frac{z}{2} \cdot \frac{e^{z}+1}{e^{z}-1}$ and $-\frac{z}{2}$, and therefore

$$
\frac{z}{2} \cdot \frac{e^{z}+1}{e^{z}-1}=\sum_{k=0}^{\infty} \frac{B_{2 k}}{(2 k)!} z^{2 k} \quad \text { and } \quad-\frac{z}{2}=\sum_{k=0}^{\infty} \frac{B_{2 k+1}}{(2 k+1)!} z^{2 k+1}
$$

when $|z|<2 \pi$. The righthand equation shows that $B_{1}=-\frac{1}{2}$ and $B_{2 k+1}=0$ for all $k \geq 1$, and evaluating the lefthand equation at $z=2 \pi i w$ shows that

$$
\begin{equation*}
\pi w \cot (\pi w)=\sum_{k=0}^{\infty} \frac{(2 \pi)^{2 k}(-1)^{k} B_{2 k}}{(2 k)!} w^{2 k} \quad \text { when } \quad|w|<1 \tag{0.0.1}
\end{equation*}
$$

A formula for $\zeta(2 \ell)=\sum_{n=1}^{\infty} \frac{1}{n^{2 \ell}}$ can be found for any positive integer ℓ by expanding $\pi w \cot (\pi w)$ as a sum over its poles and recombining it into a power series in w. The main goal of this note is to establish the same formula (and a little more) using Fourier series instead. To this end, we define a sequence of 1-periodic functions $P_{m}: \mathbb{R} \rightarrow \mathbb{R}$ via $P_{1}(x):=\{x\}-\frac{1}{2}$ (where $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x) and

$$
P_{m}(x)=B_{m}+m \int_{0}^{x} P_{m-1}(t) d t \quad \text { for all } m \geq 2
$$

Obviously $P_{m}(0)=B_{m}$ for all $m \geq 1$, and it is a good exercise to verify that P_{m} is indeed 1-periodic, smooth on $\mathbb{R} \backslash \mathbb{Z}$ for $m \geq 1$, and continuous on \mathbb{R} if $m \geq 2$. In fact, for every $m \geq 1, P_{m}(x)$ is a polynomial in $\{x\}$ (but not in x), and is thus called the m th periodic Bernoulli polynomial.

The Basel Problem

The Fourier series $\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi i n x}$ for the 1-periodic function $P_{2}(x)=\{x\}^{2}-\{x\}+\frac{1}{6}$ is given by $c_{0}=\int_{0}^{1} P_{2}(x) d x=0$ and

$$
c_{n}=\int_{0}^{1} P_{2}(x) e^{-2 \pi i n x} d x=\frac{1}{2 \pi^{2} n^{2}}=-2 \cdot \frac{1}{(2 \pi i n)^{2}} \quad \text { for all } n \neq 1
$$

Since P_{2} is continuous and piecewise smooth, a theorem of Dirichlet implies that the Fourier series converges uniformly to P_{2} on \mathbb{R}. In particular,

$$
\begin{equation*}
P_{2}(x)=-2 \sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}+e^{-2 \pi i n x}}{(2 \pi i n)^{2}} \quad \text { for all } x \in \mathbb{R} \tag{0.0.2}
\end{equation*}
$$

The solution to the Basel problem (i.e., $\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$) follows immediately by evaluating both sides of (0.0.2) at $x=0$.

Formulas for $P_{m}(x)$ and $\zeta(4), \zeta(6), \zeta(8) \ldots$
The recursive definition of P_{m}, the operator $I_{[0, x]}$ defined by $I_{[0, x]}(f)=\int_{0}^{x} f(t) d t$, and a straightforward induction argument give the formula

$$
\begin{equation*}
P_{m}(x)=\sum_{k=0}^{m-3}\binom{m}{k} B_{m-k} x^{k}+\frac{m!}{2!} \cdot I_{[0, x]}^{m-2}\left(P_{2}\right) \quad \text { for all } m \geq 2 \tag{0.0.3}
\end{equation*}
$$

where $I_{[0, x]}^{m-2}$ stands for $(m-2)$ th iterate of the operator $I_{[0, x]}$. It can also be applied to the uniformly convergent sum for P_{2} in (0.0.2) term-by-term as many times as we like:

$$
\begin{aligned}
& I_{[0, x]}^{3-2}\left(P_{2}\right)=-2 \sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}-e^{-2 \pi i n x}}{(2 \pi i n)^{3}} \\
& I_{[0, x]}^{4-2}\left(P_{2}\right)=-2 \sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}+e^{-2 \pi i n x}}{(2 \pi i n)^{4}}+4 \cdot \frac{\zeta(4)}{(2 \pi i)^{4}} \\
& I_{[0, x]}^{5-2}\left(P_{2}\right)=-2 \sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}-e^{-2 \pi i n x}}{(2 \pi i n)^{5}}+4 \cdot \frac{\zeta(4)}{(2 \pi i)^{4}} x \\
& I_{[0, x]}^{6-2}\left(P_{2}\right)=-2 \sum_{n=1}^{\infty} \frac{e^{2 \pi i n x}+e^{-2 \pi i n x}}{(2 \pi i n)^{6}}+4\left(\frac{\zeta(4)}{(2 \pi i)^{4}} \frac{x^{2}}{2!}+\frac{\zeta(6)}{(2 \pi i)^{6}}\right)
\end{aligned}
$$

By keeping track of the two sums that emerge (or more carefully, by induction), we conclude that

$$
\frac{m!}{2!} \cdot I_{[0, x]}^{m-2}\left(P_{2}\right)=\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell} \frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell) x^{m-2 \ell}-\sum_{n=1}^{\infty} \frac{m!}{(2 \pi i n)^{m}}\left(e^{2 \pi i n x}+(-1)^{m} e^{-2 \pi i n x}\right) .
$$

On the other hand, we know that $B_{2 \ell+1}=0$ for all $\ell \geq 1$, and thus

$$
\sum_{k=0}^{m-3}\binom{m}{k} B_{m-k} x^{k}=\sum_{k=3}^{m}\binom{m}{k} B_{k} x^{m-k}=\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell} B_{2 \ell} x^{m-2 \ell}
$$

so we can regroup (0.0.3) as

$$
\begin{aligned}
P_{m}(x) & =\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell}\left[B_{2 \ell}+\frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell)\right] x^{m-2 \ell}-\sum_{n=1}^{\infty} \frac{m!}{(2 \pi i n)^{m}}\left(e^{2 \pi i n x}+(-1)^{m} e^{-2 \pi i n x}\right) \\
& =\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell}\left[B_{2 \ell}+\frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell)\right] x^{m-2 \ell}-\sum_{n=1}^{\infty} \frac{m!}{(2 \pi n)^{m}}\left(e^{2 \pi i n x-\frac{\pi i}{2} m}+e^{-\left(2 \pi i n x-\frac{\pi i}{2} m\right)}\right) \\
& =\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell}\left[B_{2 \ell}+\frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell)\right] x^{m-2 \ell}-\sum_{n=1}^{\infty} \frac{2 \cdot m!}{(2 \pi n)^{m}} \cos \left(2 \pi n x-\frac{\pi}{2} m\right) .
\end{aligned}
$$

If m is odd and greater than 4 , we can see that the polynomial $\sum_{\ell=2}^{\lfloor m / 2\rfloor}\binom{m}{2 \ell}\left[B_{2 \ell}+\frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell)\right] x^{m-2 \ell}$ has positive degree and no constant term, but $P_{m}(x)$ is bounded on \mathbb{R} (because it is continuous and periodic) and the rightmost sum of cosines is also bounded on \mathbb{R} (because it is uniformly convergent), so it must be the case that $B_{2 \ell}+\frac{2(2 \ell)!}{(2 \pi i)^{2 \ell}} \zeta(2 \ell)=0$ for all $\ell \in\{2,3, \ldots,\lfloor m / 2\rfloor\}$. Since m can be arbitrarily large and since we already solved the $\ell=1$ case (the Basel problem), we conclude with the following theorem:

Theorem 0.1.

(a) For any integer $\ell \geq 1$, the $\operatorname{sum} \zeta(2 \ell)=\sum_{n=1}^{\infty} \frac{1}{n^{2 \ell}}$ is given by

$$
\zeta(2 \ell)=-\frac{(2 \pi i)^{2 \ell} B_{2 \ell}}{2(2 \ell)!}=\frac{(2 \pi)^{2 \ell}\left|B_{2 \ell}\right|}{2(2 \ell)!}
$$

(b) For $m \geq 2$, the periodic Bernoulli polynomial can be expressed as an absolutely uniformly convergent series:

$$
P_{m}(x)=-\frac{2 \cdot m!}{(2 \pi)^{m}} \sum_{n=1}^{\infty} \frac{1}{n^{m}} \cos \left(2 \pi n x-\frac{\pi}{2} m\right) .
$$

(To play with some visual examples, check out this Desmos example.)

